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Large-amplitude motions of a liquid-vapour interface 
in an accelerating container 
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(Received 24 August 1967 and in revised form 15 May 1968) 

This paper considers the large-amplitude symmetric and asymmetric irrota- 
tional motion of an inviscid incompressible fluid with a liquid-vapour interface 
in an accelerating container of revolution. A combined analytical-numerical 
method which involves no linearizations in the hydrodynamical equations and 
applies to all but surface-tension dominated motions is used to compute a 
variety of such motions. One important aspect of this non-linear method is 
that it accurately determines the initial development of surface instabilities 
such as breakers near the wall of the container. 

1. Introduction 
This paper considers the dynamic behaviour of the liquid-vapour interface 

of an inviscid fluid in an accelerating cylindrical container. There have been 
several linearized analyses of this dynamical problem in recent years; e.g. 
Satterlee & Reynolds (1964), Fung (1965) and Bowman (1966). This last refer- 
ence presents some large-amplitude motions predicted by the linearized analysis 
which offer good qualitative agreement with experimental results. The only large 
amplitude analysis that the author is familiar with besides the work of Moore & 
Perko (1965), hereafter referred to as M & P, and the work of Concus, Crane & 
Perko (1965), is that by Harlow & Welch (1965, 1966), who took viscosity into 
account, but not surface-tension effects. Their results for inviscid flow agree 
qualitatively very well with the M & P results with zero surface tension, and a 
comparison of their inviscid and viscous results indicates that viscosity tends to 
reduce the rate at which the velocity increases near the wall in reorientation 
motions. 

The large-amplitude analysis of this paper generalizes the analysis of M & P 
to the asymmetric case in an arbitrary container of revolution and includes the 
constant contact angle boundary condition necessary to have a well-posed 
problem in the computation. The method is based on the expansion of the velocity 
potential in a series of harmonic functions with time-dependent coefficients. The 
time-dependent coefficients are determined numerically by an orthonormalizing 
computation in order to satisfy the required boundary conditions. Different sets 
of harmonic functions and various orthogonalizing computations have been 
used in the analysis. The results, including the development of a breaker at  the 
wall in the computation of reorientation motions, are independent of the par- 
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ticular set of harmonic functions used. Surface tension is again included as a 
smoothing term in the computation as described in $ 3 and this is found to work 
well in all but motions dominated by surface tension. 

One of the most interesting features of this work is that it lends some insight 
into the development of surface instabilities, i.e. the development of surface 
waves or breakers, in the context of a non-linear analysis. It was already seen 
in the work of M & P (cf. p. 314) that a Taylor instability was present in computa- 
tions without surface tension and that surface tension had the effect of eliminat- 
ing the development of surface waves of sufficiently small wavelength. It is 
pointed out in this paper that surface waves and breakers do develop in certain 
types of motion even with surface tension present and that the non-linear method 
of M & P (in the symmetric case and of this paper in the asymmetric case) 
accurately predicts the initial development of these surface instabilities. This 
type of information is not available from a linearized analysis. The initial de- 
velopment of these surface waves or breakers can be computed up to the point 
where the local curvature becomes so large that the surface-tension term in 
Bernoulli’s equation dominates. This leads to numerical instabilities which cause 
the computation to stop. In  order to compute the surface motion beyond the 
point at  which surface waves or breakers begin to develop, a method of local 
smoothing is used which allows the global surface motion to be accuratcly com- 
puted at  the expense of not being able to follow the local development of any 
surface waves or breakers that may develop. This method is useful only if the 
surface waves or breakers remain sufficiently localized. This is typically the 
case in reorientation motions, but is not always true in large-amplitude lateral 
sloshing. The results obtained by this method are found to be in excellent quali- 
tative agreement with experimental results and with certain theoretical results 
of a qualitative nature as is pointed out in $5 .  

Sections 2 and 3 of this paper present the boundary-value problem and method 
of solution for the asymmetric problem in an arbitrary container of revolution 
including the constant contact-angle boundary condition. Some asymmetric 
results in which the contact angle is maintained nearly coilstant (if p =+= 0) are 
given in the latter part of 8 5 .  The reader who is familiar with the work of M & P 
and who is interested in the development of surface instabilities in the context 
of that non-linear analysis may proceed directly to $54 and 5. 

2. Problem formulation 
Let V(Y, 6,  z, t )  be the velocity of a point ( r ,  8, z )  in the fluid at tjime t .  It is as- 

sumed that the flow is irrotational, i.e. that V x v = 0 so that there exists a 
velocity potential #(r,  6 ,  z, t )  such that v = V#. The geometry is indicated in 
figure 1. Since the flow is assumed incompressible, the equation of continuity 
implies that V . v = 0 and hence that the velocity potential satisfies Laplace’s 
equation interior to the fluid, i.e. 
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for G(r,x) < 0, 0 < z < f(r,O,t), 0 6 19 < 277 and t > 0, where G(r,x)  = 0 is the 
equation of the axisymmetric container and where z = f ( r ,  8, t )  is the equation 
of the free surface. The normal derivative is assumed to be zero on the surface 
of the container; i.e. 

FIGURE 1. Container geometry and free surface. 

for 0 < z < f ( r ,  8, t ) ,  0 6 8 < 2n and t > 0. As was previously indicated, G(r,  x )  = 0 
is the equation of the axisymmetric container; e.g. for the flat-bottomed con- 
tainer of radius one shown in figure 1, 

r - 1  for r > 1, 
G(r ,x )  = 

and 

for0 Q 0 d 27randt > 0. 
The free surface boundary condition which follows from a first integral of 

Euler’s equation for inviscid flow (Landau & Lifshitz 1959, p. 3) is known as 
Bernoulli’s equation. It can be written in the form 

$t(r, 8,2,t)Is=f(r,e,t) = Q ( ~ , o , t ) ,  
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where f = f ( r ,  8, t )  describes the free surface. In  
height and the dimensionless parameter. 

( T 1  
P = z g = p  

(3), H is the volumetric average 

where B is the axial Bond number. The last term in (3) is the expression for the 
mean curvature of the free surface, i.e. the surface tension term. It can be written 
out as 

The co-ordinates in (1)-(3) have been normalized by dividing distance by yo, 

time by [ro/g( 1 +P)]* and the velocity potential by [rg g( 1 +p)]*. Laplace's equa- 
tion (1) and the boundary conditions ( 2 )  a,nd (3) remain invariant under this 
normalization. The constants ro and g can be any distance and acceleration; 
however, in practice r,, is conveniently taken as the maximum radius of the 
axisymmetric container and g is taken as the magnitude of the maximum ac- 
celeration on the container. (a,(t)g, a,(t)g, a,(t)g) is the actual time varying ac- 
celeration on the container. 

Associated with the boundary condition (3) is the boundary condition at the 
liquid-vapour-solid interface which geometrically requires the contact angle, 
$,,, to be maintained constant. It is expressed by the equation 

VG . VG, - COS$-,, (t 2 0 , o  < 0 < 2 7 4  
lVGl IVGlI = 

where as before G(r,z) = 0 describes the axisymmetric container surface and 
where G,(r, x ,  8, t )  = x -  f ( r ,  0, t )  = 0 describes the free surface. For example, if 
the container is a cylinder of radius one (in normalized co-ordinates), this con- 
dition reduces to  

= cos@o (6) 
fA1, 8, t )  

[1 +fr2(1,8, t )  +f& 8, t)l+ 
for t 2 0 ,  0 < 8 < 271. 

face to the potential, follows from the definition of the velocity as 
The remaining equation, which together with (3) relates the motion of the sur- 

v = d r / d t ,  

where r(t) is a point in the fluid corresponding to (r,  8, x )  at time t ,  on the surface 
x = f (v,  8, t ) .  This equation can be written in component form as: 

dr d8 1 d f  
d t = $ r ,  ra =;$H, a=$,. 

Using the fact that the total derivative 
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these equations can be combined into the single first-order partial differential 
equation, the kinematic equation, 

(7 )  
1 fi = 4 s  - $rfr  - p $of07 

on z = f ( r ,  O , t ) ,  for G(r,  x )  6 0, 0 6 8 6 277, t 3 0. 
The remaining information necessary to complete the description of the mathe- 

matical model are the initial conditions at t = 0. These conditions can be given 
in the form of an initial free surface shape 

f ( r ,  670) = fo@, 6 )  (8) 
together with the initial velocity of the free surface 

for G(r,  z )  < 0, 0 < 8 < 277 or alternatively one can prescribe the initial free sur- 
face shape, fo(r,  e), together with the initial velocity potential 

for 0 < x < fo(r ,  8)  
Laplace's equation (1) together with the boundary conditions (2), (3), ( 5 )  

and (7) and the initial conditions (8) and (9) or (10) define the free surface 
boundary-value problem to be solved. 

$@, 092, 0) = $&, Q,z) ,  (10) 
G(r,  z )  < 0, 0 6 6' 6 277. 

3. Method of solution 
The method used to approximate the solution to the problem posed in the 

preceding section is the natural extension of the symmetric analysis of M & P 
to the asymmetric case. In  brief, it  is assumed that the velocity potential is 
represented in the form of an infinite series 

m 

where the functions $ n ( ~ ,  8, x )  satisfy Laplace's equation (1) and possibly some 
of the boundary conditions, e.g. ( 2 ) .  The time-dependent coefficients c,(t) are 
determined numerically by an orthonormalizing computation in order to satisfy 
those boundary conditions ( 2 ) ,  (3), ( 5 )  and (7) whicharenot satisfied by $$&(r, 6,x). 
The description of the method will be limited to the case where the acceleration 
vector remains in a plane, e.g. m2(t )  = 0, although it applies as well to the general 
case. 

(i) Separation of variables 
For a flat-bottomed cylindrical container, the velocity potential satisfying 
(l), ( 2 )  and $@(r, 0, x ,  t )  = 0 (since az(t) = 0) has the representation, determined by 
separation of variables, 

(12) 
cosh (hpb) m 

$(r ,  8, z ,  t )  N C. c',"'(t)J,,(h',m)r) cosme 
m,n=O cosh (hc,")H) ' 

6 Fluid Mech. 35 



82 L. M .  Perko 

where Jk(h',")) = 0 determines the numbers A t ) ,  m, n = 0, 1, 2, .... The time 
variation of the velocity potential $(r,  8, z, t )  (i.e. of the coefficients cp'(t)) is 
determined by requiring that the representation (12) satisfy the boundary con- 
dition (3); i.e. that 

where 

This condition can be approximately satisfied by determining the first few 
coefficients c',")(t) numerically by an orthonormalizing computation over the 
free surface; cf. Davis & Rabinowitz (1961, pp. 56-83) for a general description 
of orthonormalizing methods. Actually, a much less ambitious computation 
was carried out. Only the first few coefficients of the fundamental c?)(t), n = 0,  . . . , 
No and first harmonic cE)(t), n = 0 , .  . ., Nl modes were determined. This was 
accomplished by following the motion of the free surface and orthonormalization 
on the (0 = i- &r)-plane and on the (8 = 0,n)-plane. That is, the derivatives 
of c',"'(t) are determined from Bernoulli's equation (13), on the ( 2 *n)-plane as- 
suming that the effect of the second and higher harmonics remains small; i.e. 
assuming 

N 0 ,  ... dC'3'(t) n- - 0 ,  2,- dc"'( t ) 
dt at 

With this assumption, it follows from (13) that 

The derivatives of the c',O)(t) are then determined from this equation by the ortho- 
normalization technique used in M & P. The function @(r, rt 4-77, t )  is defined by 
(3) with a g ( t )  = 0 and 0 = & in. Having determined the derivatives of c',O)(t), 
the derivatives of the coefficients of the first harmonic, c$)(t),  n = 0, ..., AT,, 
are then determined from Bernoulli's equation on the (0, +plane assuming that 
the second and higher harmonics remain small; i.e. from 

using the orthonomalization scheme used in M & P. Having determined these 
derivatives at time t leads to the predicted values of the first few coefficients 

a c p  c p ( t  + At) z c\y)(t) + -- ( t )  At at 

for m = 0 , l  and hence to an approximation for the predicted velocity potential 
throughout the entire fluid from (12). The predicted surface shape at t + A t  
follows from the kinematic equation (7) as 
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Having computed the predicted coefficients and surface shape, one then proceeds 
to the correction step of the modified Euler method to move ahead one increment 
of time. The time-dependent coefficients Q(t),  n = 0, ..., No and cg)(t), n = 0, 
. . . , A$ and the motion of the free surface f ( r ,  8, t )  (based on the fundamental and 
first harmonic of the velocity potential) are determinedin this way. The computa- 
tion scheme is outlined in figure 2. 

I 8 
8 
8 

W 

f ( t+  A r> (f, fs) (t+ A 2) V4 (t+ A t) 

i+ I 
dcim)(t+At) from (13) 
dt 

f , ( t+At) from (7) - 

The above description is for a fixed r-mesh. Iff, becomes unbounded, it ie 
necessary to use a variable r-mesh; i.e. to follow the r-characteristics as was done 
in M & P; i.e. we let r(t + At) M r(t) + $,(. . . , t )  At 

t 

and 

I 

in the predictor step, etc. 
The mean curvature of the surface f ( r ,  8, t ) ,  i.e. the surface tension term in 

Bernoulli’s equation (3), is computed by finite differencing based on the values of 
f ( r ,  0, t )  on the 0 = constant planes and neighbouring planes. Note that a know- 
ledge of the velocity potential throughout the entire fluid allows one to follow the 
motion of any point in the fluid and in particular any point on the surface. The 
boundary condition (6) is incorporated into the surface-tension computation at  
the wall; i.e. it is used in the finite differencing in order to compute the mean curva- 

6-2 
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ture at  the wall. The effect of incorporating this boundary condition into the 
Computation is to maintain the contact angle very nearly constant. This method 
of including surface tension in the computation has a stabilizing effect on the 
surface motion in the sense that it eliminates the growth of any small wavelength 
surface waves which may appear due to round off error, etc. However, this 
method of including surface tension does not yield accurate results in the compu- 
tation of surface-tension-dominated motions, i.e. we must require that 

be satisfied in the right-hand side of Bernoulli’s equation in order to obtain 
accurate results by this method. It has not been possible to determine the validity 
of the assumption that the effect of the higher harmonics remains small. This 
effect can be determined by going to a surface orthonormalization. 

(ii) An alternative harmonic expansion 
A second representation of the form (1 1) was utilized in order to study the de- 
pendence of the method on the particular set of harmonic functions that was 
used. It was of special interest to see what effect a change in the set of harmonic 
functions had on the development of the instability encountered in reorientation 
motions. The representation (11) for the case a2(t) = 0 was assumed in the form 
of an expansion in terms of harmonic functions 

m 
#@, 0 , z ,  4 c cPV) $2%, 0,4, 

n,m=O 
where the functions 

m [+nl ( -  l ) k z n - 2 k ( + y ) 2 k  
cos mt) ‘ ~ ( r ,  0) = 6) ( n  - 2 k )  ! k! (k + m) ! 

satisfy Laplace’s equation (1). This approach can be applied to the computation 
of asymmetric motions in arbitrary containers of revolution (e.g. hemispherical 
bottomed tanks) in which case the coefficients c r ) ( t )  are chosen to satisfy the 
zero normal derivative boundary condition on the container wall ( 2 )  as well as 
Bernoulli’s equation (3), on the free surface. The method in brief is first to obtain 
the predicted potential function #(r,  0, z, t + At) on the surface from a knowledge 
of the total derivative of # at time t given by 

where #t is obtained from Bernoulli’s equation at time t and the velocities which 
determine (V#)2  on the surface are known at time t .  In  this way, a mixed 
boundary-value problem, i.e. a#pn = 0 on the container surface and #prescribed 
on the free surface, is obtained for the potential q5 at time t + At. The predicted 
coefficients cp) ( t  + At) are then obtained by an orthonormalizing computation 
over the entire free surface and container surface. The computation scheme is 
outlined in figure 3. This scheme has only been implemented for the symmetric 
case (in which case the orthonormalization is over a curve rather than a surface). 
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The results of this computation for the symmetric case with a flat-bottomed con- 
tainer geometry were found to agree with the original results of M & P based on 
the separation of variables approach, including the development of breakers near 
the wall in the case of reorientation motions. Thus, the results of this method 

0 t 

- drn) (t+ A t )  “G(r,z)=O n 

f,(t+ ’- A t )  from (7) $,(t+ A t )  from (3 )  

FIGURE 3. Computation scheme for the harmonic polynomiaIs approach. 

appear to be independent of the particular set of functions used in the representa- 
tion of the velocity potential (provided that a sufficiently large number of these 
functions are used in the computation). The orthonormalization used in M & P 
did not work well for this computation. An orthonormalizing computation in 
which the functions are orthogonalized in an optimum order had to be used; 
cf. Householder (1958) and also Bussinger & Golub (1965). 

(iii) Expansion of the free surface displacement 
A second variation of the method outlined in Q 3 (i) was employed to test the per- 
manence of the results with a variation in method and to see what effect this 
variation might have on the development of the instability in reorientation 
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motions. The method is similar to the method originated by Penny & Price 
(1952) in their study of two-dimensional surface waves in which the free surface 
displacement as well as the velocity potential are expanded in a Fourier-Bessel 
series; i.e. we assume an expansion for the velocity potential $( r ,  8, z, t )  in the form 
given in (12) and an expansion for the free surface in the form 

f ( r ,  8, t )  N fo(r, 0) + z: b',m)(t)J,(A',m)r) cosmO. 

The time variation of the coefficients bcm)(t) is determined (in conjunction with 
determining the coefficients cp'(t)) as described in 9 3 (i) by requiring the kine- 
matic equation (7) to be satisfied, i.e. from 

W 

m,n=O 

where 

ar, O , t )  = [$k, 092, t )  - $Ar, 8727 t)f,(r, 8, t )  - +$&, 89% t)S,(r, 8, t)l,=fcr,e,l). 

This, as usual, is accomplished by an orthogonalizing computation. This gives 
the predicted values of bp)( t  + At),  the modified Euler scheme being used to move 
ahead in time. This was implemented on the computer in the symmetric case and 
it was found that this approach agreed with the results obtained from the original 
approach, including the development of the breaker near the wall in reorienta- 
tion motions. 

(iv) Non-zero initial velocity 
Starting the computation with non-zero velocity can be achieved in two ways: 
by specifying the velocity of the initial surface as in (9); or by specifying an initial 
non-zero velocity potential (10); i.e. by specifying one or more non-zero coeffi- 
cients in the representation (1 1). The former of these two methods will be dis- 
cussed in the case of the representation (12) since it may not be evident to the 
reader how to determine the initial coefficients cPl(0) when the initial velocity 
of the free surface is prescribed. Given the initial velocity v(r,O) = (u(r,O), 
v ( r ,  e),  u7(r, O)), the coefficients cp)(O) are determined by an orthonormalizing 
computation as follows. Suppose that 

W 

$( r ,  z ,O ,  o)~z=fo(?.,o) c c P ( O ) ~ ? ' ( r ,  O,O), 
m,ii-O 

where the functions F?(r, 8, t )  are defined in (14). The problem is then to de- 
termine the c',m'(O) to satisfy 

m 

,,n=O 
c (m) 

n C, (O)F$?(r,8) - ~ ( ~ , 0 ) 7  

where the vector valued function Fp)(r, 8) can be written in component form as 
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This can be accomplished by orthonormalizing the set of functions FT)(r, 8) with 
respect to the inner product 

(FP), Fjk)) = &/02n/01 FP)(r, 8) .  Pik)(,, 8)rdrd8, 

respect to the inner product 

the dot denoting the usual vector inner product. This has been implemented in 
the symmetric case (i.e. v(r, 0) = 0) and by reading in coefficients c‘,o’(O), n = 1, 
..., 7 computing the initial velocities U ( T ,  0) and w(r,  8) and then using the tech- 
nique described above to recompute the coefficients c(,o’(O), n = 1, . . ., 7, the com- 
putation being carried out in single precision, it was found that the computed 
coefficients agreed with the original coefficients to within an accuracy of O(lO-7). 

4. Surface instabilities 
It was pointed out by Taylor (1950) in a linearized analysis neglecting surface 

tension and viscosity that when a liquid surface is accelerated in a direction 
perpendicular to the surface with the acceleration vector directed from the more 
dense to the less dense fluid, the liquid surface becomes unstable. Furthermore, 
Taylor showed that the smaller the wavelength of the surface wave , the faster it 
grows, i.e. the rate of growth is proportional to h-4, where h is the wavelength. 
This effect is referred to as the Taylor instability. These results were found to be 
in agreement with experimental results of Lewis (1950). When the acceleration 
vector is directed in this manner, we will refer to the surface as undergoing an 
upward acceleration. This type of Taylor instability was observed in the numeri- 
cal results of M & P based on a non-linear analysis; cf. figures 2 ,  3 and 7, where 
p = 0. It was pointed out by Bellman & Pennington (1954) in a linearized analysis 
that surface tension removes the Taylor instability for sufficiently small wave- 
lengths (relative to the surface tension parameter p). This was also observed in 
the non-linear work of M & P (1965); cf. figures 5 and 8. 

Thus, due to the stabilizing influence of the surface tension, we were able to 
compute smooth surface motions which would otherwise experience surface 
splashing as a result of the Taylor instability. However, surface tension does not 
eliminate the development of surface splashes or surface breakers of sufficiently 
large wavelength (relative to p) as is evidenced by the experimental results of 
Lewis (1950), Abramson, Chu & Kana (1966) and figures 8 and 9, plate 1, of this 
report. As was pointed out in $3, the method of this paper is not applicable to 
the computation of surface tension dominated motions where (16) is not satis- 
fied. Thus, once a splash or breaker has developed to the point where the mean 
curvature is very large, (16) will fail to be satisfied (even if 0 < 1) and the 
computation will not be valid beyond this point. A numerical instability de- 
velops at  this point and causes the computation to halt within a few iterations. 
However, up to this point the computation gives an accurate account of the sur- 
face motion. Thus, it  is possible by this method to determine the time at  which a 
surface splash or breaker begins to develop in the actual motion and to determine 
the initial development of the splash or breaker. These results are in good agree- 
ment with experimental results as is pointed out in the next section. 
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5. Numerical results 
In  the f i s t  part of this section we present some results for symmetric motions 

which: show the effect of including the constant contact angle boundary condi- 
tion in the computation for p + 0; show that in reorientation motions with small 
p of order breakers near the wall of the container of small wavelength 
h z 0.07 are not eliminated by surface tension and that the initial development 
of these breakers is accurately determined by this method; and show that in 
reorientation motions, local smoothing of the breakers near the wall allows one 
to compute the motion of the fluid from one end of the container to the other. 

FIGURE 4. Symmetric oscillation envelope with a, = 0, a3 = - 1.0, /3 = 0.05 wid $o = 45". 

The second part of this section gives some results for asymmetric motions based 
on the fundamental and first harmonic in the velocity potential as described in 
$ 3. It is shown that sustained transverse sloshing motions can be computed by 
this method and that the method accurately determines the initial development 
of a large amplitude surface wave of wavelength h M 0-35 excited by pure first- 
mode sloshing. These and other asymmetric results indicate that higher harmonics 
in the velocity potential have a secondary effect in the computation. 

First of all, we note that including the boundary condition (6) in the computa- 
tion as described in $ 3  results in a motion during which contact angle remains 
effectively constant. An example of this is shown in figure 4. This figure shows the 
envelope of an oscillatory motion which is basically the same as that shown in 
figure 8 of M & P except that the contact angle now remains constant. The velo- 
city envelope for this motion, i.e. the velocity at the wall and at  the centre, is 
shown in figure 5 .  All intermediate velocities lie between these two curves. The 
velocities return to zero and the surface to its initial shape (to within five-place 
accuracy when the computation is carried out in single precision) after an inter- 
val of normalized time T = 2.6. Thus the resulting motion is an oscillatory mo- 
tion with period T. As was pointed out in $4, surface tension removes the Taylor 
instability (which is present for /? = 0 as seen in M & P, figure 7) on that part of 
the surface which is accelerating upward and allows the computation ofa smooth 
oscillatory surface motion with contant contact angle by the method of 53. 



Large amplitude motions of a liquid-vapour interface 89 

We next consider a reorientation motion in which a breaker develops on the 
surface near the wall of the container, both in the computed motion and in the 
actual reorientation motion observed at  the Lockheed drop-tower facility. The 

FIGURE 5 .  Vertical velocity envelope for the symmetric oscillatory motion of figure 4. 

5 

t 
FIGURE 6. Vertical velocity eizvelope for a symmetric reorientation motion with a, = 0, 

a3 = 1.0, /3 = 0.00384 and contact angles $,, = 15' and $o = 45'. 

velocity profile for such a motion including surface tension is shown in figure 6. 
We see that at about t = 0.7 (for both 15" and 45" contact angles) an oscillation 
in the velocity at  (and near) the wall begins to develop. This corresponds to the 
development of a breaker near the wall similar to that shown in figure 3 of 
M & P even with surface tension present. It was observed in M & P, figure 5 ,  
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I I I 
0 1 *o 

FIGURE 7 FIGURE 8 

FIGURE 7 .  Symmetric reorientation with local smoothing near the wall for cc1 = 0, a3 = 1.0, 
/3 = 0403S4 and $o = 15". 
FIGURE 8. Comparison of experimcntal end numerical results for symmetric reorientation 
with a1 = 0, a3 = + 1, /3 = 0.00384. The solid curves illustrate the experimental results 
which are for a hemispherical bottomed 6.96 cm diameter container and $h0 = 0" and the 
dashed curves are the results of figure 7 .  
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that using a variable time step (reduced at each step to keep the growth of the 
surface tension term in Bernoulli's equation less than some given bound) did 
result in a smooth motion with no apparent development of breakers for ,8 
sufficiently large. However, in that computation the size of the time step went to 
zero in the computation as t - t t ,  z 0.75. With a knowledge that breakers de- 
velop near the wall in the actual fluid motion, it is evident that the Computation 
points out this fact but is unable to continue because the condition (16) is no 
longer satisfied near the wall. The actual time at  which the breakers begin to 
develop in the experimental results is difficult to pin-point from the movies 
taken, but it is somewhere in the range 0.7 < t < 0.8, and the breaker is well 
developed by the time t = 0.88 as can be seen in figure 8. The solid curves in 
figure 8 show a reorientation motion (for the parameters listed there) obtained 
from movies taken at  the Lockheed drop-tower facility. For a description of the; 
experimental apparatus used, cf. SatterIee et al. (1967). By the time t = 1-55 
a sharp spike has developed on the surface near the wall as is depicted in figure 8 
and as can be seen in the photograph in figure 9, plate 1, which is an enlargement 
of the movie frame corresponding to t = 1.55. The computational results thus 
indicate quite accurately the time at which a breaker begins to develop (t 0.7 
independent of contact angle) and give some indication of the initial develop- 
ment of the breaker (e.g. in figure 3 o f  M & P all but the last two surface shapes 
probably give an accurate representation of the surface motion since (16) is 
satisfied up to that point). In  looking at  the velocity envelope for this motion 
up to the point at which a breaker begins to develop at  the wall, one sees that the 
motion at the wall is approximately that of a free falling particle, w(1, t )  2 t ,  and 
the velocity at  the centre w(0, t )  is approximately approaching the theoretical 
velocity o f  a bubble rising in an infinite fluid, w = 0.46. Encouraged by the good 
quality of these results, it was natural to look for a way to extend the computation 
of the global motion beyond the point at  which a breaker begins to develop a t  
the wall without asking for a detailed description of the breaker development as 
the fluid moves along the wall. (The experimental results indicate that the de- 
velopment of the breakers is an unstable process and would thus require an ex- 
tremely sensitive method to be able to compute this development. This is beyond 
the scope of this analysis.) A method of local smoothing was used to eliminate the 
development of breakers at the wall. This resulted in the smooth reorientation 
motion shown in figure 7, which is in good qualitative agreement with experi- 
mental results as shown in figure 8. The local smoothing technique simply ex- 
trapolates the velocity in the region where a large curvature begins to develop 
and thereby eliminates the large amplitude oscillations which develop in the 
vertical component of the velocity in these regions. The computation over the 
remainder of the surface then proceeds without modification. For the reorienta- 
tion motion of figure 7, the velocity extrapolabion resulted in the dashed straight 
line curve for the vertical velocity at the wall shown in figure 6 (and a similar 
velocity extrapolation for points near the wall 0.93 < r < 1.0) and in the com- 
puted velocity at  the centre shown in figure 6 (and at the remaining points 
0 < r < 0-93). The bottom of the container has begun to influence the shape of 
the surface as is seen in figure 7, but has little effect on the velocity at  the centre 
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until the surface gets very close to the bottom. These results are compared with 
similar experimental results obtained at the Lockheed drop-tower facility for a 
reorientation motion. The comparison is shown in figure 8 and is seen to be very 
good over a substantial part of the motion. The main difference in the experi- 

I 
O < t < l . O  

I I 
- 1.0 0 1.0 

a3 = -2.0, /l = 0.04, $0 = 90'. 
FIGURE 10. Transverse sloshing with a, = 4.0 for 0 < t < 0.05, a1 = 0 for t > 0.06, 

mental and numerical results (beside the obvious effect of the flat-bottomed 
container on the numerical results) is that the velocity at  the wall in the experi- 
mental results grows at a rate of approximately 0.7 (in the normalized co- 
ordinates) as compared with the rate of approximately 1.0 in the numerical 
work. The results of Harlow & Welch (1966) indicate that viscosity has exactly 
this sort of effect on the velocity of the fluid near the wall and would most likely 
account for this discrepancy in the rate of growth of the velocity near the wall. 

We next discuss some of the results obtained from the asymmetric computa- 
tion based on the fundamental and first harmonic in the velocity potential. 
Figure 10 shows the effect of a transverse impulse on a fluid making a 90" contact 
angle with the wall and initially at  rest. The result is a back-and-forth transverse 
sloshing motion. After an impulse from the right has been applied to the container, 
a mound of fluid builds up on the right and a valley on the left, figure 10a. This 
is followed by a sloshing from right to left with the mound of fluid travelling 
across the container in the form of a travelling wave. This results in a mound of 
fluid on the left and a valley on the right, figure l o b .  This is followed by a sloshing 
of the fluid in the opposite direction, figure lOc, etc. The impulse is described by 

4.0 for 0 Q t < 0.05, 

0 for t > 0.05, adt) = 
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in figure 10. However, it was found that exactly the same results were obtained 
for any high initial transverse acceleration level (say cc,(O) 2 1.0) provided the 

total impulse 

Wenext look at a pure k s t  mode lateral slosh obtained by setting @ ( O )  = 0.1 
and the other coefficients initially equal to zero in the expansion of the velocity 
potential (12). The results for an initially flat surface with $, = 90" are shown in 

al( t )  dt remained constant. som 

- 1.0 0 

FIGURE 11. First-mode lateral sloshing with a, = a3 = /3 = 0, ci1)(O) = 0.1, At = 0.5 
and @, = 90". 

- 

FIGIJRE .08 and 
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figure 11. One non-linear effect that is immediately seen is that the node occurs 
at  approximately r = 0.2 rather than at  r = 0 as in the linear theory. The surface 
splashing that takes place on the part of the surface undergoing an upward 
acceleration illustrates the development of the Taylor instability in this region. 

Since no surface tension is present ( p  = 0) in this case, the small wavelength 
surface waves which develop in the computation grow very fast and cause the 
computation to halt. Even with p $: 0 in this type of motion a large-amplitude 
wave began to develop on the upper part of the surface when it reached a height 
of approximately one-half tank radius above the initial plane surface level. 
This took place in the r-intervalO.55 < r < 1.0 as is indicated in figure 11. This 
agrees qualitatively very well with the experimental results of Abramson et al. 
(1966). Their figure 1 shows a well-developed large-amplitude breaking surface 
wave in the region 0.55 < < 1*0,0.5 < x - Z, d 1.0 ( - 6 < 8 < 6, 6 < a). Thus, 
it would again appear that the method of 9 3 is able to predict the time and initial 
development of a surface wave up to the point where (16) is no longer satisfied. 
The local smoothing technique described above could again be used to predict 
$lie gross motion beyond this point without accurately determining the surface 
splash. However, in this case, as the experimental results of Abramson et al. 
(1966) show, the wavelength of the surface wave, h = 0.35 If: 0-05, is not negligibly 
small as compared to the radius of the tank R = 1.0 (in contrast to the reorienta- 
tion motion of figure 8 where the breaker wavelength h z 0.07 < 1). Therefore, 
determining the gross surface motion in this case by smoothing over a relatively 
large local region would probably not give a good representation of the gross 
surface motion as it did in the case of the reorientation motion. 

Figure 12 shows a large amplitude asymmetric reorientation in which the 
liquid is being poured out of a cylindrical container tilted at a 45" angle to the 
local horizon; i.e. al(t) = a,(t) = + 1.0. The surface-tension parameter F =  0.05 
in this case and the contact angle is maintained very nearly constant at @o = 45". 
The last surface shape shown does not satisfy (16) in the region 0.5 < T < 1.0, 
- 6 < 8 < 6,6 -g 1, and therefore does not represent a true surface shape. These 
results indicate that in this type of motion, a large-amplitude wave (with a 
relative large wavelength h x 0.4) will develop on the upper part of the surface, 
i.e. the surface tension does not eliminate the growth of large wavelength surface 
waves in this type of motion. 

The last example is presented in order to emphasize the three-dimensional 
asymmetric aspect of the surface motion being computed. Figure 13 shows the 
motion that results when a liquid making a 45' contact angle with the wall ini- 
tially in a zero-g environment is subject to an acceleration making a 45" angle 
with the axis of the container, i.e. a l ( t )  = a,(t) = - 1.0. The surface-tension 
parameter /3 = 0 in this example and thus the constant contact-angle boundary 
condition is not maintained. The computation terminates due to the develop- 
ment of a Taylor type instability on the part of the surface undergoing an up- 
ward acceleration. 

This work was supported by the NASA Manned Spacecraft Center under Con- 
tract NAS 9-5174 and under the Lockheed Independent Research Program. 
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t = 0.8 

FIGURE 13. ksymmetric surface motion with a1 = aQ = - 1.0, p = 0, @o = 45'. 
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FIGURE 9. A photograph taken during the symmetric reorientation described in figure 8 
corresponding to t = 1.55. 
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